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Turbulent cascade processes generically give rise to asymptotic in between these functions and hence obtain
extremely variable multifractals, and there is now the single scattering statistics.  In some special cases, it is
abundant empirical evidence that both cloud liquid water possible to renormalize the multifractal so as to obtain an
density and cloud radiance fields are multifractal over equivalent homogeneous medium.  We then estimate
wide ranges of scale.  Since general circulation models and anomalous diffusion exponents.
NWPs assume that clouds are on the contrary horizontally
homogeneous, it is therefore important to study the
transport properties (particle, photon) of multifractals and
compare the results with the homogeneous plane parallel
situation.  Since the plane parallel and multifractal
radiative properties diverge for increasingly thick clouds, it
becomes fundamentally important to characterize the
scaling properties and optical thickness of real clouds.

We investigate these radiative properties of multifracal
clouds using two different approaches.  In the first, we
examine the simplest nontrivial transport problem,
diffusion, by considering the scaling properties of one
dimensional random walks on media with multifractal
diffusivities.  We show both theoretically and numerically
that the anomalous scaling depends on the scaling of the
reciprocal spatially averaged multifractal resistance to
diffusion.  We show that the anomalous scaling will
always be subdiffusive; the walkers are effectively trapped
in a hierarchy of barriers.  In the small-scale multifractal
limit, the trapping is dominated by contributions from a
specific order of singularity; this leads to a phase transition
between anomalous and normal diffusion as the extreme
resitivities (barriers) are reduced.

A second approach considers the scattering statistics asso-
ciated with radiative transport.  We develop an (analogue)
co-dimension formalism for dealing with this problem.
The basic quantities are the size of the medium measured
in units of mean free paths the co-dimension function
of the media density, and the scattering (analogue) co-
dimension function.  We obtain simple relations

Diffusion

Consider a one-dimensional multifractal optical density
field denoted  where  is the ratio of the largest
scale of interest to the smallest scale of homogeneity (see
Silas 1994 and Lovejoy et al. 1995a for more details).  We
have

where the statistical exponents  are orders of singularity
satisfying a well-defined probability distribution at each
scale.

where  is the co-dimension function and equality is to
within slowly varying prefactors.  The statistical moments
of the multifractal field are described by the moment
scaling function 

where q is the order of the moment and the brackets
indicate ensemble averaging.
The coefficient of diffusion  is taken to be
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Figure 1.  Multifractal field with Cl = 0.2 and
 = 1024.

Figure 2.  A random walk performed on the inset of
Figure 1.  A superposition of the trail of the walk
(121,080 steps taken) upon the region of the field
explored by the walker is pictured here.  The walker
is “trapped” between large values of the field, hence
a slow-down of the diffusion process.

that is,  is a resistance to diffusion; regions of high
resistance to diffusion are likely to correspond to rare,
dense (impenetrable) regions of the medium.  In the
diffusion approximation to radiative transfer, is
proportional to the (multifractal) optical density (Figures 1
and 2).

We now use a one-dimensional long-time

where N is the number of distinct sites visited by the
random walker and the  are the resistances associated
with those sites, t is the time taken for the walk, and
(equation) is the variance of walks on a single realization
of the (multifractal) process (overbars indicate means over
walks, angle brackets indicate means over ensembles of
multifractal realizations of ).  The simple interpre-
tation is that the random walker experiences an effective
resistance equal to the mean resistance of
the sites it has visited. and estimate  from the average of the intervals:
We now define the exponent  by

where we have assumed that K(-1) is finite (hence will not
always apply to the universal multifractals with 
We finally obtain

Hence, since  we will have sub-
diffusive behavior; the particles are trapped in a hierarchy
of barriers.  In the limit  the diffusive behavior is
therefore totally dominated by structures with resistivity
singularity distributed over a fractal set with
co-dimension   The higher order singularities are too
rare to affect the transport, and the lower order
singularities are too weak to significantly trap the
particles.  This critical singularity is associated with a
phase transition: if the resistivity field is replaced by a
thresholded field with all values exceeding a fixed T reset
to the value T, then, in the limit  there will be a
transition from anomalous diffusion (with the above
exponent) to normal diffusion when T is reduced below the
critical value (Figure 3).
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Figure 3.  Dependence of the scaling exponent S(2)
of the second order moment of x (<x > ~ t ) on C.2 S(2)

l

The solid line is the theory (1+C ) ; the data points1
-1

were obtained from simulations.

Figure 4.  Photon “random walk” in a multifractal
cloud (C1= 0.1; A=512) with extinction coefficient
K=32.  The y-axis represents the cloud density p and
the number of scatters of the photon (1 unit
corresponds to 20 scatters).  The x-axis represents
the position in the 1-d cloud.  With increasing
extinction coefficient , the mean free path length of
the photon decreases.

Particle Scatter/Radiative
Transfer

Here we outline recent results which provide the basis for
systematic study of radiative transport in multifractal
media (see  1994 and Lovejoy et al. 1995b).
Specifically, we indicate how formulae analogous to the
multifractal optical density field arise for radiative
properties.  Consider the following definitions:

k = extinction coefficient 

< > = mean cloud density 

l = random photon path distance [m]

L = size of cloud [m]

 = mean free path (m.f.p.) of a photon in the equivalent
homogeneous cloud =  [m]

 scale ratio   maximum cascade
resolution)

random photon nondimensional distance,
(fraction of cloud)

 random photon distance, (no. of homo-
geneous cloud m.f.p.’s = kx)

 extinction parameter = no. of m.f.p.'s across
cloud = mean optical depth = extinction coefficient in units
such that 

Figure 4 shows an illustration in one dimension (c.f. Fig-
ure 2 for diffusion).  The optical distance over a physical
distance 1 is thus

where we have written  for the average density at
resolution 1.  We obtain
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Figure 5.  Result on total transmission after multiple
scattering through 2-d multifractal cloud (Cl = 0.5)
compared with the thick cloud limit of the
transmission through a homogeneous cloud with
renormalized extinction coefficient .eff

which is the optical thickness over a distance 1 through a
singularity of order  The direct (unscattered)
transmission T across this distance is thus

Since the transmittance is the probability distribution for
photon path lengths, we can average over the singularities
and obtain

Take  as the dimensionless photon path and write it as a
scaling function with an order of singularity  defined as
follows

or

since   we have  also 

We can now obtain a multifractal scattering formalism in
which the extinction coefficient  takes the place of the
scaling parameter  Instead of the co-dimension func-
tion  of the singularities of the cloud density , we
rather talk about an analogue co-dimension function

which describes how the single photon path
distance singularity  varies with the extinction
coefficient:

 is the prefactor

with  related as above.

Renormalization

We can now relate the transmission statistics of lognormal
multifractal clouds to those of homogeneous clouds.  At
first sight this seems to be a difficult task since, in the
thick limit , both types of clouds will result in a
completely different behavior of the radiative transfer
properties.  However, we find that the photon statistics of
a multifractal cloud can be approximated by the photon
statistics of a “renormalized” homogeneous cloud in a cer-
tain range of photon singularities.  This cloud has the
direct transmission given by  where  is
the equivalent “effective” extinction coefficient.  For a
log-normal multifractal cloud, we obtain

We now test that this idea works for multiple scattering
using the numerical results of Davis et al. (1991) (with C1
= 0.5; Figure 5).  These simulations were made using two
dimensional discrete lognormal cascades with scale ratio
factor 2 per step, total range of scales   Cyclic
boundary conditions were used in the horizontal and
photons were vertically  incident.  Using  the  standard
thick  cloud  plane
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parallel result with the effective extinction coefficient in  the cloud is statistically negligible.  The multifractals with
place of the true optical thickness we  have precisely the property that they are dominated
obtain by weak events (negative singularities) called Levy

Figure 5 shows the result of superposing this function on
the numerics, which are nearly power law even for  as
low as 12.5.  The total transmittances through the
renormalized homogeneous cloud show for all values of

only less than 20% difference from the total
transmittances through the multifractal cloud.

Discussion

The surprisingly accurate prediction of thick cloud
numerics can perhaps best be understood by considering
the relation between radiative transfer and diffusion on
multifractals.  In general, there will be two significant
limits:  the large  (wide cascade range) and large 
(thick cloud) limits.  Clearly, for fixed and finite , if the
cloud is made thick enough the mean free path will
be much smaller than a single resolution element, and the
photons will diffuse through each homogeneous region of
size  The overall result will be photons diffusing
through the multifractal cloud.  In actual fact, diffusion can
still occur under somewhat less stringent conditions when

 is large, the main requirement being that weak density
regions become so rare that direct photon transmittance
across  a  large  fraction of

holes.   It is a priori possible that even with large  if
 is sufficiently large (the order of the limits  and

 is important, i.e., with  fixed, but with ,
they will have large regions dominated by the holes and
hence lead to nondiffusive transfer.
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